Non Commutative Metrics on Quantum Families of Maps

نویسنده

  • MAYSAM MAYSAMI SADR
چکیده

We show that any quantum family of maps from a non commutative space to a compact quantum metric space has a canonical quantum semi metric structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermitian metric on quantum spheres

The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.

متن کامل

The General Form of γ-Family of Quantum Relative Entropies

We use the Falcone–Takesaki non-commutative flow of weights and the resulting theory of non-commutative Lp spaces in order to define the family of relative entropy functionals that naturally generalise the quantum relative entropies of Jenčová– Ojima and the classical relative entropies of Zhu–Rohwer, and belong to an intersection of families of Petz relative entropies with Bregman relative ent...

متن کامل

Quantum Programs as Kleisli Maps

Furber and Jacobs have shown in their study of quantum computation that the category of commutative C∗-algebras and PU-maps (positive linear maps which preserve the unit) is isomorphic to the Kleisli category of a comonad on the category of commutative C∗-algebras with MIU-maps (linear maps which preserve multiplication, involution and unit). [3] In this paper, we prove a non-commutative varian...

متن کامل

Su ciency in quantum statistical inference

This paper attempts to develop a theory of su ciency in the setting of non-commutative algebras parallel to the ideas in classical mathematical statistics. Su ciency of a coarse-graining means that all information is extracted about the mutual relation of a given family of states. In the paper su cient coarse-grainings are characterized in several equivalent ways and the non-commutative analogu...

متن کامل

Some Operator Ideals in Non-commutative Functional Analysis

We characterize classes of linear maps between operator spaces E, F which factorize through maps arising in a natural manner via the Pisier vector-valued non-commutative L spaces Sp[E ∗] based on the Schatten classes on the separable Hilbert space l. These classes of maps can be viewed as quasi-normed operator ideals in the category of operator spaces, that is in noncommutative (quantized) func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008